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ABSTRACT

A 1.5 inch diameter, L/D = 1, spiral-grooved, gas journal bearing with a rotor
weight of 2-1/8 lb. per bearing, mounted in a housing (total weight of approx-
imately 100 1b.) was subjected to a one (l) g vibrating load over a frequency
spectrum of 20 to 2000 cps. Tests were made at rotor speeds of 12,000, 20,000
and 30,000 rpm. The only static bearing load imposed was the rotor weight. The
in-line and perpendicular frequency responses of the rotor (both magnitude and
phase angle) were measured and recorded. No sign of bearing touchdown was de-
tected. Correlation between this experimental data and available theoretical

data was good.




-iy-

TABLE OF CONTENTS

Page
ABSTRACT - e oo e oo e oo e e e e e e e iii
ACKNOWLEDGEMEN TS - o o e e e e m e e cccccccc e c————————— v
INTRODUCTION o o o e e ccc e e e ——————— 1
TEST APPARATUS AND INSTRUMENTATION _ .o oo e cccccdcccmcccccceaa—a 2
EXPER IMENT S - oo o e o e e e e c e mc e m—mm e e mm e ————————— 4
DISCUSSION OF EXPERIMENTAL RESULTS o v ceccccccecaem 5
CONCLUSIONS AND RECOMMENDATIONS oo oo oo mcccccccccmccee e m 8
REFERENCES - e e e e ccccccmccccc—cccc;—————————— 9
NOMENCLATURE USED WITH FIGURES _ oo ceccccmcmcmeeee 10
APPENDIX Lo e e e e e cc e —————————— 12

FIGURES (1 through 8)



ACKNOWLEDGEMENTS

The author wishes to thank his colleague, Dr. C.H.T. Pan, for his constructive

suggestions, and technical discussions and guidance during the program.

The author is extremely grateful to Mr. P. H. Broussard, Jr. and his associates
at Astrionics Laboratory, George C. Marshall Space Flight Center, NASA, Huntsville,
Alabama, who not only permitted the use of their shake table test facilities but

also contributed much effort in making the present testing program a success.

This work was administerd by Mr. S. W. Doroff, Office of Naval Research, Department

of the Navy.




INTRODUCTION

Recently, experiments were made on the spiral-grooved, gas journal bearing to
test its steady-state performance (Ref. 1). This bearing performed well when
subjected to a steady applied load; i.e., it carried the load at the eccen-
tricity predicted by theory. Also, no sign of bearing whirl instability was

detected in the speed range of the investigation.

The next natural step was to test the performance of the same bearing under a
vibratory, externally applied load. Under Contract Nonr-3730(00), Task NR
062-317/4-7-66, these tests have been performed and the results are the sub-

ject of this report.

A number of reports have been published on the frequency response of a rotor
in gas bearings (e.g. Refs. 2, 3 and 4) — all are theoretical in nature. Some
theoretical frequency response data has been made available in Reference 2

for the plain infinitely-long bearing. The particular analysis was extended
to the finite, plain bearing in Reference 3. Theoretical frequency response
data for the plain finite bearing are presented in Reference 4. Also, a fur-
ther extension of the analysis to the spiral-grooved journal bearing is given
with accompanying theoretical results. These theoretical data for the spiral-
grooved journal bearing are used in this report for comparison with the now

available experimental results.




TEST APPARATUS AND INSTRUMENTATION

The basic elements of the test apparatus are a grooved shaft, two plain bearing
sleeves mounted in a housing, two housing end plates incorporating carbon buttons,
and a hydrostatic lifter-loader bearing. Its housing has an integral circular
base plate so that it can be bolted directly to a shake table with an eight (8)
inch bolt circle. The entire weight of the test apparatus is approximately 100
pounds. The 1.5 inch diameter journal, which is 8.75 inches long with 16 turbine
blades on one end, is depicted in Figure la. Total rotor weight is 4.25 pounds.
These two partially-grooved areas running against smooth carbon graphite sleeves
comprise the test bearings. These bearings have 36 etched grooves per side, at

a spiral angle, B = 25°. Groove dimensions are 0.021 inches wide, 0.345 inches
long and from 500 to 600 microinches deep. The ratio of groove width-to-ridge
width is 0.54. At zero speed, the radial clearance is 495 microinches. At

30,000 rpm, the radial clearance has been calculated to be 480 microinches. There-
fore, the groove clearance-to-ridge clearance ratio varies from approximately 2.0
to 2.25. The axial length of the grooves takes up 46 percent of the entire bear-
ing length of 1.5 inches, (L/D = 1). Measured between the mid-planes, the bearing
span is 5.5 inches. The shaft may be lifted for start-up and shutdown by a hydro-
static lifter-loader bearing, located between the two test bearings. A nozzle
ring in conjunction with the 16 blades on the shaft comprise an impulse-type

drive turbine. Each end plate has a carbon button, with one button being adjust-
able. These buttons provide a means for centering the shaft axially and for

carrying a slight thrust load when necessary.

The shaft could be driven to a maximum speed of only 34,000 rpm because of the
plumbing limitations at the shake table facility. However, the speed was held
constant — varying approximately T 2 cps during a 7-1/2 minute run. Speed was
measured with an optical probe and frequency counter. The optical probe counts
a painted pattern on the end of the shaft, and the signal is indicated on the

frequency counter,

Temperature of each bearing was recorded by thermocouples embedded in the carbon

graphite. The effect of the cool nitrogen blowing past the one bearing as it




escaped from the turbine area could thus be determined. Before each test was
made at a given constant speed, the temperatures of both bearings were allowed

to reach equilibrium.

The lifter-loader bearing was not used during these tests for applying an ex-
ternal load to the test bearings. Only the rotor weight itself loaded the

bearings. At 12,000 rpm, this corresponds to an eccentricity ratio of eoz .1
and at 30,000 rpm, €.~ .05. As an extra precaution at start-up and shutdown,
a slight pressurization of the lifter-loader bearing was applied to lift the

rotor from the test bearings.

The shaft displacement (output) was measured by two horizontal (perpendicular)
and two vertical (in-line) capacitance probes. These four capacitance probes
were specially fabricated to have a capacitance range of 6 to 30 pico-farads
for use with the Photocon-Dynagage* system. Each test bearing has a set of
two probes located inboard from the bearing itself and mounted in the housing.
An accelerometer was mounted on the housing to measure the G-level of vibra-

tion input.

Figures 1lb, lc and 1d illustrate essentially the entire test instrumentation

setup.

*
Capacitance dynamic displacement monitoring equipment manufactured by Photocon

Research Products. 4




EXPERIMENTS

The rotor-bearing housing assembly was mounted on the shake table. (Note Figure
lIb). 1In all tests, the rotor attained a constant speed and the bearings an equil-

ibrium temperature. The bearings communicated with normal atmospheric pressure

and temperature,

The first test was a 20-2000 cps log-sweep at one (l) g input vibration level re-
quiring a 7-1/2 minute time duration. The only static load on the bearings was
the rotor weight of 4.25 pounds. This test was performed at speeds of 12,000,
20,000 and 30,000 rpm. A paper recording (Visicorder) was made of the in-line
and perpendicular displacements of the rotor (output) and of the vibration ampli-
tude of the shake table (input) during the entire test. An oscilloscope was also

used to display the rotor in-line displacement versus the shaker input.

At all three speeds, resonances were detected at, or near, "half-frequency" and
at a higher frequency which varied from 550 to 700 cps — depending on the rotor
speed. Discrete frequency tests were then made with a slower recorder paper
speed at these resonant frequencies in order to study in detail the phase rela-
tion between the input and output, and to obtain a more accurate response mag-

nitude reading. Both in-line and perpendicular responses were studied.

The final test was a l-g rms flat-spectrum, random input test at 12,000 rpm. The
in-line response of the rotor at one bearing position was recorded on tape and

these results were then analyzed to obtain a "power spectral density" plot.




DISCUSSION OF EXPERIMENTAL RESULTS

Figures 2, 3, and 4 give a comparison of theory and experiment for the in-line
and perpendicular frequency response magnitude for three rotor speeds of 12,000
20,000 and 30,000 rpm respectively. The continuous solid line is the tlLeory,
(Ref. 4)and the points symbolized by (x and @) are the experimental points for
the two specific bearings. One can note the generally good correlation between
tiieory and experiment. There are two resonant frequencies; one at or near 1/2
frequency, the other in the high frequency range of from 550 to 700 cps. The
in-line response magnitudes at these two resonances are about equal at 12,000
rpm. At the higher rotor speed of 20,000 rpm, the 1/2 frequency resonant mag-
nitude is considerably reduced and at still a higher rotor speed of 30,000 rpm,
this response is hardly noticeable. On the other hand, the magnitude of the
high frequency resonance is not effected by the increase in speed, i.e., it
remains rather constant at around 7 (or 8) to 1. The perpendicular response
magnitude is comparatively small (15 percent of the in-line response magnitude)
at the high frequencies including the resonant frequency, but at 1/2 frequency
the perpendicular response magnitude is approximately 65 percent of the in-line
response. Notice the stiffening effect of increasing the rotor speed by examin-

ing the low frequency in-line response. At 12,000 rpm the response is 2.9 to 1,

at 20,000 rpm the response is 2.3 to 1, and at 30,000 rpm, 1.3 to 1. In addition,

notice that there is essentially no measurable response at frequencies above the

ligh frequency resonance.

Figure 5 can be used to examine the phase relationship between the input and out-

put, (rotor response). This figure consists of three samplings of the Visicorder.

Each sampling consists of five distinct recordings. From left to right: the first

two correspond to the in-line response (two bearings); the second two correspond

to the perpendicular response; and the fifth recording is the input to the shake-

table and bearing housing. The horizontal line is a timing line. The theory,

(Ref. 4), predicts that the in-line response should be in phase with the input

and the perpendicular response should be 90° lagging at the 1/2 frequency reson-

ance. Indeed, this is borne out by the experimental data shown by the first two

samplings, 5a and 5b, corresponding to rotor speeds of 12,000 rpm and 30,000 rpm

respectively.



The theory further predicts that both the in-line and perpendicular responses
should be 90° lagging at the high frequency resonance. The third recorder
sampling, Figure 5c, shows the in-line response to be lagging by approximately
90° at 560 cps. The perpendicular response is small and overshadowed by the
background noise of instrumentation and one cannot determine the phase relation-

ship.

An interesting observation was made on the oscilloscope at half frequency at
all rotor speeds. The "scope" picture was elliptical in nature and contained
an orbiting bright spot. Just under half frequency, the bright spot rotated
in one direction; right at half frequency the spot was stationary; just above
half frequency the bright spot rotated in the opposite direction. Perhaps one
might use this information to determine the exact rotor speed without using a

frequency meter.

In Figure 6, a series of oscilloscope photographs are given which illustrate
the in-line response of the rotor (vertical axis) versus the input to the hous-
ing (horizontal axis) for a frequency range of from 90 cps (just under 1/2
frequency) to 700 cps at a rotor speed of 12,000 rpm. These figures are per-

haps best understood if one considers the following:

Let the input (x-axis) be represented by x = a cos wt, and the output
(y-axis) by y = b cos (wt - ¢). These two parametric equations are equiv-
alent to the one equation for an ellipse, (f) -2 (f)(%) cos ¢ + (%) =
sin2 #. 1In this equation, ¢ is the phase angle between the input and in-
line rotor response (output). From the theory, we already know that this
phase angle is zero at the "half frequency" resonance, ¢ = -90° at the
high frequency resonance and ¢ = -180° at frequencies above this high fre-
quency resonance. Now consider the photographs in Figure 6. If ¢ = 0° or
-180°, the above equation reduces to straight-line equations % = 2, and

% = - § respectively. Note that at 90 cps, the photograph is a straight
line with a positive slope and at 700 cps, the photograph is a straight
line with a negative slope. This indicates that the half frequency reson-

ance is slightly below 100 cps, or about 90 cps, and that the higher



resonant frequency lies below 700 cps. If ¢ = -90°, the above equation
reduces to a principal ellipse — refer to the photographs at 560 cps and
600 cps. The photographs for 110 cps and 200 cps illustrate that ¢ has
some value other than 0°, * 90° or T 180°. 1In theory, ¢ = -10° at 110 cps
and ¢ = -45° at 200 cps. '

Figure 7 illustrates the results of a lg rms flat spectrum random input test at
12,000 rpm. Measurement of the magnitude of the in-line rotor response was made
at one bearing position. The results (power spectral density) indicate that the
majority of the "power" is at the two resonances approximately 100 cps and 650
cps. This confirms what has been observed and discussed above; for example,
Figure 2, 3 and 4. Generally speaking, the system behaves more or less like a

lightly damped linear system — but with two resonances.

During these tests, the temperature at each bearing location was measured. This
allowed one to determine the equilibrium temperature at each running speed before

the dynamic load was applied. These temperatures are tabulated below:

Speed, rpm Turbine End, Bearing Speed Pick-Up End,Bearing
0 83.25°F 83.25°F
12,000 85.2° F 86.9° F
20,000 91.8° F 95.0° F
30,000 94.5° F 104.9° F

The effect of the cooling turbine-drive gas is indicated in the above table. The
temperature difference between bearings is 10°F at 30,000 rpm. Thus, the vis-
cosity difference and axial thermal distortions along the rotor are essentially
negligible. It should be further noted that the temperature at each bearing
rose gradually, the total rise being typically 1°F during a 7-1/2 minute vibra-

tion test.




CONCLUSIONS AND RECOMMENDATIONS

A simple rotor, rotating at speeds of 12,000, 20,000 and 30,000 rpm, in lightly-
loaded, spiral-grooved journal bearings has been subjected to a 1 g vibratory
load from 20 to 2000 cps and performed as predicted by previously available

theoretical data; i.e.,

a) Two resonances occurred - one near 1/2 frequency and one at a much

higher frequency.

b) The magnitude of both the in-line and perpendicular frequency response
at 1/2 frequency decreased with increasing speed. This is an improve-

ment over plain bearing performance.

c¢) The in-line magnitude of the high frequency resonance remained rather
constant within the speed range tested. The corresponding perpendic-

ular response was essentially negligible.

d) The resonant frequency conditions could be easily pin-pointed by ob-
serving the oscilloscope picture of the in-line frequency response

versus the shaker input.

e) At frequencies above the high frequency resonance the response is

negligible.

A "power spectral density" plot was made of the in-line response magnitude to a
random 1 g rms vibration at a rotor speed of 12,000 rpm. The plot shows maximum
power at 100 cps and 650 cps, corresponding to the half-frequency and high fre-

quency resonance, respectively.

It is recommended that this same rotor-bearing system be tested at higher rotor

speeds and perhaps larger g — levels.

It is further recommended, that at higher speeds — near 45,000 rpm, the rotor-
bearing system be monitored very closely for observation of the critical speed

of the rotor. See Appendix for a discussion on rotor critical speed.
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NOMENCLATURE USED WITH FIGURES

~

2
Bearing Number:

A=22 @
a

V) - absolute viscosity of gas, psi-sec
»n - angular velocity of rotor, rad/sec
P, - ambient pressure, psia

- radius of shaft, in.

c - radial clearance, in.

L/D Slenderness Ratio:

- bearing length, in.

- bearing diameter, in.

2

Q= MCw Mass Parameter:
2LDp
a
. 2,.
M - mass of rotor per bearing, lb.sec”/in.
€, = e/C Eccentricity Ratio:
e - radial displacement of shaft, in.
€, 2DLpa e
- = - itude:
N C v Response Magnitude
t

e - displacement due to dynamic load, in.
\ - mG
m - rotor weight per bearing, lb.

- a/g; number of G's acceleration




Groove Parameters:

ag/ar - Groove width/ridge width

h /h - Groove clearance/ridge clearance

5] - Spiral angle, deg.

Y - Total groove axial length/bearing length
f= % Frequency Ratio:

a, vibration frequency or whirl frequency, rad/sec

d/e Displacement Ratio:

d, distance between rotor mass center and rotor geometric center, in.

-11-



APPENDIX

Rotor Critical Speed

The rotor critical speed may be determined from the following equation and con-

dition: (See Ref. 5 for derivation).

o V¥ 52
|—t—] - —& + 1 =18 (a.1)
o2 2 e
‘mD cos ¢! mw
Minimization of % represents the point of the rotor critical speed.
Kr = dynamic radial stiffness associated with synchronously whirling
rotor, 1b./in.
m = mass of rotor per bearing, 1b.sec2/in.
é = dynamic attitude angle, deg.
® = rotor rotating speed equal to whirling speed, rad/sec.
o) = distance between rotor mass center and rotor geometric center, in.
e = bearing eccentricity, in.

For the present rotor-bearing system the value of % calculated according to
Eq. (A.1) has been plotted versus the rotor speed in Fig. 8. Notice it reaches
a minimum value between 42,000 and 48,000 rpm. Plotted on the same graph is
the vibration frequency ratio, f, associated with the maximum amplitude of tue
in-line rotor response at the higher resonance condition. Note that this curve
has a frequency ratio of f = 1 at approximately 45,000 rpm. These two methods

thus predict the rotor critical speed at 45,000 rpm.

In Ref. Ei] it was reported that this rotor critical speed could not be observed
on the oscilliscope. This inability to observe the synchronous whirl orbit was
due to two reasons:
(1) the gradual behavior of the §/e versus speed curve at its minimum,
(See Fig. 8) and
(2) the calculated value of the synchronous whirl orbit is less than 5
micro-in. based on &/e = %, (Fig. 8) and a measured unbalance of 40
micro-ounce-in. This is less than the oscilliscope , total reading

error of 10 micro-in.
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IN-LINE (VERTICAL) CAPACITANCE PROBES,

PERPENDICULAR (HORIZONTAL) CAPACITANCE PROBES.,
ACCELEROMETER FOR MEASURING G-LEVEL OF SHAKE
TABLE INPUT.

L1GHT PROBE FOR MEASURING FLUCTUATION OF AN
ALTERNATELY PAINTED SHAFT END,

BASE PLATE OF HOUSING INDICATING ATTACHMENT WITH
SHAKE TABLE.

CoMPRESSED GAS INLET To TURBINE DRIVE.

HousING ENCLOSING TEST ROTOR AND BEARING.,

Fig. 1b Close-up of Test Rig

MTI-3456
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1. VISICORDER FOR INDICATING DISPLACEMENT OF ROTOR
WITH RESPECT TO FIXED BEARING,
2. PHoTo-CoN MEASURING FQUIPMENT FOR PICKING UP
CAPACITANCE PROBE SIGNAL THROUGH A TRANSDUCER,
3, FoToNic SENSOR USED TO SuppLY FREQUENCY COUNTER
WITH VoLTAGE CHANGE,
4, SHAKE-TABLE.
5. PAPER RECORDER FOR INDICATING TEMPERATURE OF BEARINGS.
6. FREQUENCY COUNTER FOR INDICATING SHAFT SPEED.

Fig. 1lc Overall View of Instrﬁmentation
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1. Line ELECTRONIC SHAKE-TABLE EQUIPMENT
CONSOLE.

2. Low StiFFNESs SprING Usep To RELIEVE
Housing DEAD WEIGHT LOAD FROM SHAKE-
TABLE.

Fig. 1d Close-up of Shake Table Console
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12000 RPM ROTOR SPEED 100 CPS VIBRATION FREQUENCY (75 % SIZE)

Fig. 5a Recorder Output Sampling Showing Phase Angle of X and Y
Output at £~ 1/2, 12,000 rpm.

30,000 RPM ROTOR SPEED 250 CPS VIBRATION FREQUENCY

Fig. 5b Recorder Output Sampling Showing Phase Angle of X and Y
Output at £~ 1/2, 30,000 rpm.

12,000 RPM ROTOR SPEED 560 CPS VIBRATION FREQUENCY

Fig. 5c  Recorder Output Sampling Showing Phase Angle of X and Y
Output Near High Frequency Resonance, 12,000 rpm.

MTI-3457
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